LIDAR REPORT

MISSISSIPPI AND ALABAMA COASTAL MAPPING

U.S. ARMY CORPS OF ENGINEERS MOBILE DISTRICT

CONTRACTOR: R&M CONSULTANTS, INC. CONTRACT NO. W91278-04-D-0001/0003 EN PROJECT NO. C-05-054

> Prepared By: WOOLPERT, INC. PROJECT NO. 64557

> > November 2005

TABLE OF CONTENTS

Overview	Section 1
LiDAR Data Acquisition	Section 2
PDOP Information	Section 3
LiDAR System Data Report	Section 4
Report for Airborne GPS Survey during LiDAR Mission	Section 5
Data Processing and Quality Control	Section 6
ALS50 LiDAR System Calibration Report	Section 7
Figure A—Project Boundary/LiDAR Coverage	A-1
Figure B—LiDAR Coverage	B-1
Figure C.1—LiDAR Flight Log	C-1
Figure C.2—LiDAR Flight Log	C-2
Figure C.3—LiDAR Flight Log	C-3
Figure C.4—LiDAR Flight Log	C-4
Figure C.5—LiDAR Flight Log	C-5
Figure C.6—LiDAR Flight Log	C-6
Figure C.7—LiDAR Flight Log	C-7
Figure C.8–LiDAR Flight Log	C-8

Section 1

SECTION 1: OVERVIEW

Introduction

The U.S. Army Corps of Engineers has a contract task order in place with Woolpert, Inc., through R&M Consultants, for the collection of GPS ground survey and airborne Light Detection and Ranging (LiDAR) for selected areas along the gulf coast of Alabama, Mississippi, and Louisiana. The U.S. Army Corps of Engineers requests permission to allow our contractor to perform the overflight/data acquisition where required as part of this tasking. The data is used to support the Corps mission in debris removal, 3D Modeling, Flood Study Analysis, etc. in coordination with, and in support of, other federal government agencies.

The Mississippi and Alabama Coastal Mapping project calls for the following:

- ✓ The LiDAR DEM was delivered as "first return", "last return", "bare earth", and "water" delivery in ASCII format.
- ✓ The LiDAR Intensity imagery was delivered in TIFF format (with associated world file) and MrSID format.

This report contains a review of the project requirements and detailed information for LiDAR data acquisition and quality control (QC) including:

- ✓ Documentation specifying altitude, airspeed, scan angle, scan rate, LiDAR pulse rates, and other flight and equipment information deemed appropriate
- ✓ A chart of position dilution of precision (PDOP)
- ✓ A LiDAR System Data Report
- ✓ A LiDAR Data Acquisition report
- ✓ A report for the airborne global positioning system (ABGPS) survey performed during the LiDAR mission
- ✓ A system calibration report

Project Area

The project area encompasses approximately 740 square miles of Hancock, Harrison, Jackson counties in Mississippi, and Mobile County in Alabama. The limits are from the land water interface (shoreline) to the north Right of Way of Interstate 10.

Project Requirements

General standards for the LiDAR mission include:

- ✓ High density LiDAR data acquisition within the project limits (see Figure A, Project Boundary/LiDAR Coverage) at a sufficient altitude and 1 meter average density to support digital terrain model (DTM) development with a vertical accuracy of 15 centimeters (NSSDA RMSE_Z) in flat and open areas (i.e. low grass, plowed fields, lawn, golf courses).
- \checkmark Avoid inclement weather for flight missions.
- ✓ Choose a flight path that provides satisfactory coverage of the study area, including both parallel and enough cross flight lines to allow for proper quality control.
- ✓ Document flight mission date, time, flight altitude, airspeed, scan angle, scan rate, laser pulse rates and other information deemed pertinent.

Section 2

SECTION 2: LIDAR DATA ACQUISITION

This section provides an overview of the LiDAR acquisition methodology employed by Woolpert Inc. on the Mississippi and Alabama Coastal Mapping project. Typical LiDAR system parameters include:

- ✓ Altitude
- ✓ Airspeed
- \checkmark Scan angle
- ✓ Scan rate
- ✓ Laser pulse repetition rate

Flight and equipment information is also included.

LiDAR Overview

LiDAR data was acquired across the project limits (see Figure A, Project Boundary/LiDAR Coverage) by Woolpert Inc for the USACE, Mobile District in September 2005 and October 2005 along the coastline of Hancock, Harrison, Jackson counties in Mississippi and Mobile County in Alabama from the land water interface (shoreline) to the north Right of Way of Interstate-10. The LiDAR DEM was delivered as "first return", "last return", "bare earth", and "water" delivery in ASCII format. The LiDAR Intensity imagery was delivered in TIFF format (with associated world file) and MrSID format. Contract Number: W91278-04-D-0001/0003 EN. Project Number: C-05-054. Contractor: R&M Consultants, Inc., Anchorage, AK. Subcontractor: Woolpert, Inc., Dayton, OH.

LiDAR Mission

The LiDAR data acquisition was executed in eight sessions, on September 19, September 20, September 21, October 3, October 4, October 5, October 8, October 9, 2005 using a Leica ALS50 LiDAR System. Specific details about the ALS50 system are included in Section 4 of this report.

The airborne GPS (ABGPS) base stations supporting the LiDAR acquisition was located in three areas, eastern area, central area, and western area, divided by mapping limit along coastline across Mississippi and Alabama. Dual Frequency data was logged continuously for the duration of each LiDAR flight mission at a one-second sampling rate. A table of control points for the LiDAR survey is included in Section 5 of this report.

The flight plan for LiDAR consisted of parallel flights in an east-west extent across eastern and central areas, and in a north-south extent across western area (see Figure B, LiDAR Flight Layout). One-hundred-fifteen (115) flight lines of LiDAR data were acquired in 8 sessions along the coast.

No significant problems were encountered during the LiDAR data acquisition phase of the project.

LiDAR Statistical Data

The LiDAR parameters are as follows:

Aircraft Speed:	13
Flying Height:	3,0
Scanner Field of View:	40
Scan Frequency:	36
Pulse Repetition Rate:	52,

130 knots indicated air speed3,000 feet above ground level40 degrees36 Hertz52,300 Hertz

Data Acquisition Summary

Date	Julian Day	Lines	Base 1	
9-19-05	26205	C16-C26	MOB Base 1	
9-20-05	26305	A1-A18	Stennis	
9-21-05	26405	A19-A44	Kiln	
10-03-05	27605	B46-B78	MOB Base 2	
		B1-B11,		
		eastern		
10-04-05	27705	B12-B24	Van RM 1	
		Western		
		B12-24,		
		B25-B29,		
		C15		
10-05-05	27805	(abort)	Van RM 1	
		B30-B45,		
10-08-05	28105	C10-C15	MOB Base 1	
10-09-05	28205	C1-C9	MOB Base 2	

Table 2.1 LiDAR Acquisition Log, Mississippi and Alabama Coastal Mapping Project.

Section 3

SECTION 3: PDOP INFORMATION

PDOP, the Positional Dilution of Precision, is a factor that describes the effects of satellite geometry on the accuracy of the airborne GPS solution. The geometric distribution of the satellites is measured relative to the locations of the receivers on the ground and in the aircraft. PDOP can be computed in advance, based on the approximate receiver locations and the predicted location of the satellite, which is called the satellite ephemeris.

Low PDOP numbers are preferable; the higher the PDOP number, the weaker the geometric quality of solution between the satellite, aircraft and reference receivers.

Woolpert's goal is to maintain a final PDOP of 2.5 or less during all LiDAR acquisition missions. Satellite geometry and the resultant PDOP levels are dynamic, changing with the position of the aircraft. Occasionally, one satellite in the network will drop below the horizon, breaking its connection to the receiver, and the PDOP level will spike above 2.5 momentarily. Small deviations of this type are accounted for during post-processing of the data through the use of Kalman filtering. If PDOP in the aircraft rises above 2.5 for a significant time period, the survey is usually stopped until the geometry improves.

The following table contains the average PDOP and distance separation between the aircraft and base station for each LiDAR acquisition mission.

Date	Base Station	PDOP Dist. Separ	
9-19-05	MOB Base 1 2.2		35
9-20-05	Stennis	2.5	20
9-21-05	Kiln	2.4	30
10-03-05	MOB Base 2	2.4	30
10-04-05	Van RM 1	2.3	35
10-05-05	Van RM 1	2.5	35
10-08-05	MOB Base 1	2.3	45
10-09-05	MOB Base 2	2.2	30

Table 3.1. Mississippi and Alabama Coastal Mapping Project LiDAR Report, PDOP

Section 4

SECTION 4: LIDAR SYSTEM DATA REPORT

The LiDAR data was acquired using an ALS50 onboard a Cessna T404. The ALS50 LiDAR system, developed by Leica Geosystems of Boston, Massachusetts, includes the simultaneous first, intermediate and last pulse data capture module, the extended altitude range module, and the target signal intensity capture module. The system software is operated on a P-400 Diagnostic System Laptop Computer aboard the aircraft.

Nominal			
Operating Altitude	400 – 3,000 meters		
Elevation accuracy	15cm single shot		
Range Resolution	1 cm		
Scan angle	Variable from 0 to 75°		
Swath width	Variable from 0 to 1.5 X altitude		
Angle resolution	0.01°		
Scan frequency	Variable based on scan angle		
Horizontal Accuracy	Better than 1/2000 X altitude		
Supported GPS receivers	Ashtech Z12, Trimble 7400, Novatel Millenium		
Laser repetition rate	58 kHz		
Beam divergence	0.3 mrads		
Laser classification	Class IV laser product (FDA CFR 21)		
Eye safe range	400m single shot depending on laser repetition rate		
Power requirements	28 VDC @ 25A		
Operating temperature	10-35°C		
Humidity	0-95% non-condensing		

The ALS50 LiDAR System has the following specifications:

Figure C-1 and C-8 contain images of the LiDAR flight logs.

SECTION 5: REPORT FOR AIRBORNE GPS SURVEY DURING LIDAR MISSION

Introduction

Woolpert performed ABGPS surveying during the LiDAR mission to derive the flight trajectory at a 1second interval. ABGPS is a critical factor in LiDAR data collection. As such, we spent considerable time developing flight windows around the satellite constellation. We also developed multiple base stations to provide redundancy and to reduce ionospheric and atmospheric errors due to distance separation between the aircraft and the base stations.

At a minimum, two base stations were in operation for every LiDAR acquisition session, operating at a 1-second sampling rate.

To provide a common base line with the aerial photography, all base stations were located over photography control points (see Ground Control Report). Final adjusted control point values were used to process the LiDAR data. Using the same reference system for LiDAR and photography helps provide close correlation between photography and LiDAR. The survey report includes extensive data about the procedures and results for the ground control survey.

As a continuing quality control measure, data was downloaded each evening in the field to verify a strong GPS solution and then refined in-house to determine final trajectories.

A base-station control survey was performed to provide uniformity and to ensure consistency between the ground control and Airborne GPS. All ground control surveys were performed to achieve accuracies which meets criteria for LiDAR Mapping outlined in the "Guidelines and Specifications for Flood Hazard Mapping Partners" as published in February 2002.

Project Team

Woolpert Inc survey and flight crews were responsible for the successful completion of this LiDAR project. The airborne GPS survey was conducted with exceptional coordination between the Woolpert survey crews and the flight crews.

Weather

LiDAR acquisition occurred when the cloud ceiling was at least 5,500 feet above ground level (AGL) and there was no rain or thick haze (visibility less than 4 miles).

Datum Reference

The datums used for this project include the North American Datum of 1983 High Accuracy Reference Network (NAD83/HARN) and the North American Vertical Datum (NAVD88). The coordinates are based on the UTM, zone 16, and the units of measure are in meter. LiDAR points are later translated into Geographic NAD83/HARN horizontal and NAVD88 vertical in the units of meters.

Field Work

The Woolpert flight and survey crews coordinated twice daily to review weather, flight schedules and GPS base station locations. Flights were generally performed in sequence, except when outside factors interfered, such as controlled burns or localized clouds. Once the day's schedule was determined, field crews set receivers in relation to the appropriate base stations. Flight and ground crews were in constant communication during data acquisition sessions through air-to-ground radios; if ground crews saw developing problems, such as high PDOP levels, they would alert the flight crew.

At the close of each day's data acquisition session, the flight and ground crews would meet at the field office to download data from receivers, recharge batteries, process and quality check the data, and prepare data backups. By the end of each day, the field crews were ready for the next day and the first-level quality control was complete. LiDAR data was also downloaded and initial processing steps were completed to check for any voids in the data. For example, if the plane encounters windy conditions, gaps in data between flight lines may result.

Airborne Control Stations

Seven (7) NGS monumental control points was used as a base-station during the LiDAR survey.

Station	Ellipsoid	Latitude	Longitude	
	Height(meters)	(deg min sec)	(Deg min sec)	
Kiln	-13.007	N30 25 08.90571	W 089 27 01.30237	
Stennis	-22.581	N 30 22 23.16202	W 089 27 10.92706	
Van RM 1	9.436	N 30 35 22.43950	W 088 43 18.15487	
Bridge Reset	-24.699	N 30 24 38.14109	W 088 50 29.88759	
MOB Base 1	37.326	N 30 40 55.11650	W 088 14 56.15580	
MOB Base 2	37.201	N 30 40 55.09518	W 088 14 57.98743	
CODEN	-24.160	N 30 23 02.27242	W 088 14 26.13402	

Equipment

Woolpert owns all the equipment used for the ground control and ABGPS missions. Two base-station units were mobilized every day during the LiDAR mission, and were operated by a member of the Woolpert survey crew. Each base-station setup consisted of one Trimble Navigation R7 dual frequency geodetic receiver with Zephyr geodetic antenna, one 2-meter fixed-height tripod, and essential battery power and cabling. The aircraft is configured with a Novatel Millennium 12-channel, dual frequency GPS receiver to support LiDAR acquisition missions.

Data Processing

All initial airborne data was processed using the Waypoint Consulting, Inc. GrafNavTM software. Data was gathered and processed at a one-second data capture rate. All data was recorded at an elevation mask of 10 degrees.

Airborne GPS Data

GPS base station log sheets are included in Ground Control Survey Report.

Section 6

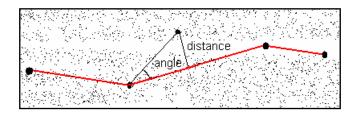
SECTION 6: DATA PROCESSING AND QUALITY CONTROL

LiDAR Data Processing

In this process, Woolpert employed GPS differential processing and Kalman filtering techniques to derive an aircraft trajectory solution at 0.5-second intervals for each base station within the project limits. Statistics for each solution (base station) were generated and studied for quality. The goal for each solution is to have:

- maintained satellite lock throughout the session
- > position standard deviation of less than 5 centimeters
- Iow ionospheric noise
- ➢ few or no cycle slips
- > a fixed integer ambiguity solution throughout the trajectory
- > a maximum number of satellites for a given constellation
- ➤ a low (2.5 or less) Position Dilution of Precision (PDOP)

Often times a solution for a given base station will meet all of the above parameters in certain portions of the trajectory while the other base station might meet the above conditions in different portions of the trajectory solution. In this case, further processing was done to form different combinations of base station solutions and/or satellites to arrive at the optimal trajectory.


When the calibration, data acquisition, and GPS processing phases were complete, the formal data reduction process began. Woolpert LiDAR specialists:

- ✓ Studied individual flight lines and how these lines match adjacent flight lines to ensure the accuracy meets expectations.
- ✓ Identified and removed systematic error locally (by flight) which is not possible if the lines are combined into a block. This is sometimes the case when a satellite loss of lock occurs during a flight and the GPS solution fixes on the wrong integer ambiguity.
- ✓ Adjusted any small residual error (due to system noise) between flight lines and across all flight lines to survey ground control (or existing mapping if available).
- ✓ Clipped the overlap region of each flight line to obtain a single homogenous coverage across the project area. This eliminated redundant, overlapping point data that could overwhelm terrain modeling software packages.
- ✓ Processed individual flight lines to derive "Point Cloud."

Given the airborne GPS aircraft trajectory and the raw LiDAR data subdivided by flight lines, we used manufacturer software to reduce raw information to a LiDAR point cloud on the ground. Woolpert has developed proprietary software to generate parameter files, allowing the manufacturer's software to process a block; this allows us to batch process any number of flight lines. As part of this process, outliers in the data are removed. Typical outlying data points are a result of returns from clouds.

✓ Classified the point cloud data into ground and non-ground points

The classification algorithm classifies ground points by iteratively building a triangulated surface model. The routine starts by selecting some local low points as sure hits on the ground then builds an initial Triangulated Irregular Network (TIN) from selected low points. The routine then starts developing the ground model upward by iteratively adding new laser points to it. Each added point makes the model follow the ground surface more closely. Two iteration parameters, iteration angle and iteration distance, determine how close a point must be to a triangle plane so that the point can be accepted to the ground model. **Iteration angle** is the maximum angle between points, its projection on triangle plane and closest triangle vertex. **Iteration distance** parameter makes sure that the iteration does not make big jumps upwards when triangles are large. This helps to keep low buildings out of the ground model.

The vegetation and buildings are removed to obtain bare-earth. Even in areas covered by dense vegetation, ground points are correctly classified.

 \checkmark Filtered the bare-earth data to remove small undulations.

Small random errors exist in the data due to electronic noise within the system. These errors manifest themselves as small undulations in the data. Woolpert developed a software application based on a Laplacian of Gaussian (LOG) operator modified to fit LiDAR data and remove small undulations. The filter controls accuracy by an elevation tolerance setting to meet a given accuracy threshold. The tolerance determines the maximum allowable elevation change of laser points. We developed a data structure suitable for LiDAR so that the searching routine is very fast [O(1)] computational complexity] making this algorithm quite efficient.

✓ Edge matched individual flight lines, generated statistics on the fit, and clipped the flight lines to butt match each other.

The next step in our process is to clip individual flight lines such that adjacent flight lines butt match and a homogenous LiDAR coverage is provided across the entire mapping limit, without overlap. A software routine was developed to follow the overlap region between two adjacent flight lines and place a "cut line" in the middle of the overlap region. The software will also generate statistics along each seamline as to how well each flight matches with its neighbor in flight.

If all flights are consistent within the mapping specifications, cross flight and ground control data is imported and studied for fit. As a QC measure, Woolpert has developed software to generate accuracy statistical reports by comparison among LiDAR points, ground control, and TINs generated by LiDAR points. The absolute accuracy is determined by comparison with ground control. Statistical analysis is then performed on the fit between the LiDAR data and the ground control. Based on the statistical analysis, the LiDAR data is then adjusted in relation to the ground control.

✓ Water removal and data QC.

This step requires LiDAR technicians visually go through all tiles to remove points on water from ground layer to water layer, and to remove any bridges and buildings remaining in ground layer to default layer.

✓ Generate LiDAR intensity images.

LiDAR intensity images in GeoTIFF format are generated from all layers of LiDAR points in tile sized pieces. A MrSID image is made from TIFF images.

✓ Translated the Data Into the Appropriate Map Projection

Once all of the data has been reduced and quality controlled, the bare-earth data is translated into the final map projection. Note that the airborne GPS aircraft trajectory is processed in the target datums in relation to the orthometric height. Woolpert used National Geodetic Survey's GEOID03 software to derive the orthometric height.

The raw LiDAR point cloud data is derived in UTM coordinates. All subsequent processing is carried out in this projection to avoid introducing errors associated with and moving across larger scale map projection zones. The data is translated into the target map projection through the Tralaine software package, a coordinate system converter. The entire transformation is generally setup and run in a batch mode.

As a quality control step, the orthometric heights are compared against ground survey results. In our experience, GEOID03 is sometimes inaccurate in certain areas of the country. If a problem is detected, we will have to acquire additional ground control that will allow us to calculate our own transformation by determining the rotation matrix.

Section 7

SECTION 7: ALS50 SYSTEM CALIBRATION REPORT

Introduction

This Woolpert ALS50 LiDAR System Calibration Report shall be used to represent confirmation of the LiDAR system specifications, performance, and requirements. The system functionality, elevation, and horizontal accuracy performance shall be demonstrated for calibration purposes.

This report contains various test results and information pertaining to the system. It should be noted that all numbers shown in this report are in **meters** unless otherwise stated. All coordinates stated in the report are in the WGS84 coordinate system with ellipsoidal elevation.

System Model Number:	ALS50
Client Name:	U.S. Army Corps of Engineers, Mobile District
Calibration Date	October 18, 2005
Report Prepared By:	Qian Xiao

System Specifications and Requirements

The ALS50 LiDAR system, built by Leica Geosystems for Woolpert Inc, has the following specifications:

Nominal			
Operating Altitude	400 – 3,000 meters		
Elevation accuracy	15cm single shot		
Range Resolution	1 cm		
Scan angle	Variable from 0 to 75°		
Swath width	Variable from 0 to 1.5 X altitude		
Angle resolution	0.01°		
Scan frequency	Variable based on scan angle		
Horizontal Accuracy	Better than 1/2000 X altitude		
Supported GPS receivers	Ashtech Z12, Trimble 7400, Novatel Millenium		
Laser repetition rate	58 kHz		
Beam divergence	0.3 mrads		
Laser classification	Class IV laser product (FDA CFR 21)		
Eye safe range	400m single shot depending on laser repetition rate		
Power requirements	28 VDC @ 25A		
Operating temperature	10-35°C		
Humidity	0-95% non-condensing		

On Site Antenna Offsets and Location

Aircraft GPS Antenna

The following measurements were calculated for Woolpert's aircraft N404CP equipped with LiDAR. The POS/AV and ALS50 processing numbers were calculated from internal measurements completed in Leica's lab, and the positioning of the GPS antenna on the aircraft was field surveyed by Woolpert using a total station.

	Reference Point to GPS Antenna
Χ	0.646 m
Y	0.014 m
Ζ	-1.304 m

The following measurements were calculated in the lab at Leica and will remain constant.

	User to IMU Lever Arm (POS/AV)
Χ	-0.269 m
Y	0.139 m
Ζ	-0.017 m

Base Station GPS Antenna

Monument Description:			
GPS Receiver Type:	Epoch Interval: 1 sec		
Trimble 4700	Elevation Mask: 10 degrees		
Antenna Type: Trimble Observation Type: Static			
Station Names used in processing the acceptance data:			
<u>#1: COLB</u> N 39 57 35.11261 Lat. W 08 <u>#2: Woolpert</u> N 39 45 56.36709 Lat. W	e 1		

Flight Calibration Methodology

Data Collection

To accomplish the formal calibration, Woolpert has established calibration ranges consisting of an airport runway, buildings, and parking lots. The calibration range has been ground surveyed to an accuracy of better than 1 cm. Four flight lines with two different altitude and opposing headings (see figure 7-3) are required in order to capture pitch, roll, heading (see figure 7-1) and torsion errors (see figure 7-2).

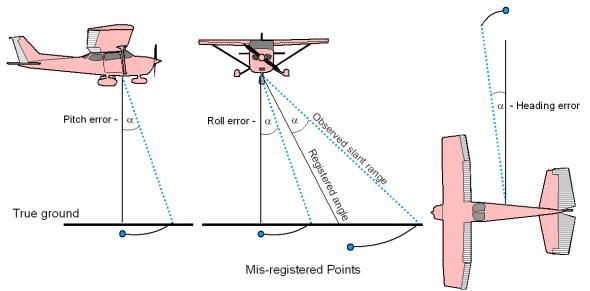
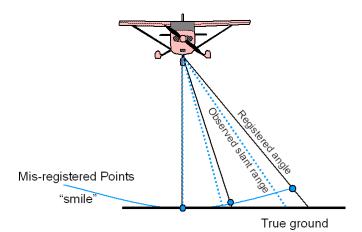



Figure 7-1: Misalignment Errors.

Figure 7-2: Torsion Error

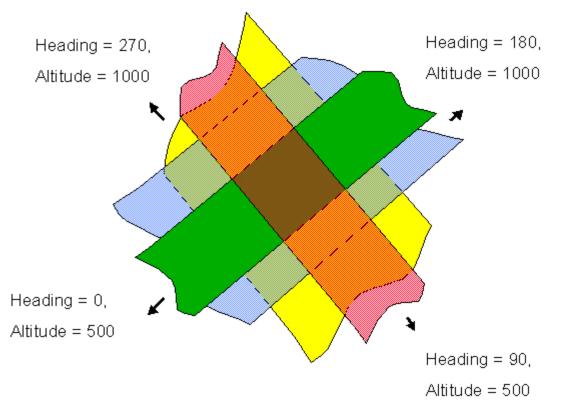


Figure 7-3: Optimal Flight Pattern for Calibration

Intensity Images

Four images from LiDAR intensity reflectance are generated in order to pick up tie points (see figure 7-4). A least square adjustment (LSA) is performed using AutoBoresighting software provided by system manufacturer. Pitch, roll, heading, and torsion errors are calculated by LSA.

Figure 7-4: Ortho photo generated from LiDAR intensity reflectance.

Ground Control Points

Ground control points were collected along and across an airport runway. A total of 116 runway points were surveyed. The LiDAR collects scan data over the control points and the data is then used to determine the absolute Z accuracy of the system. The distribution of the runway points can be found in Figure 7.5.

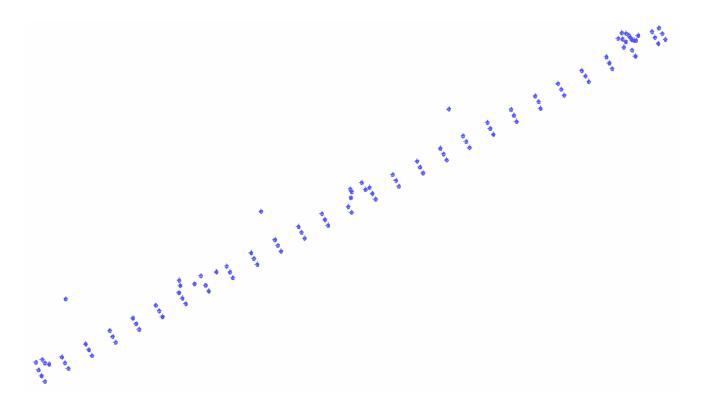


Figure 7-5: Ground control points on the runway

Flight over Ground Control Points

Flight lines, flown parallel and perpendicular to the runway control points, were used to determine the elevation (Z) error of the LiDAR data as well as pitch, roll, heading, and torsion can be seen in Figure 7-6. Each day the runway was flown, multiple overlapping strips were performed to assure that most control points were covered and to increase the likelihood that a laser point would strike within 0.5 meters of a control point.

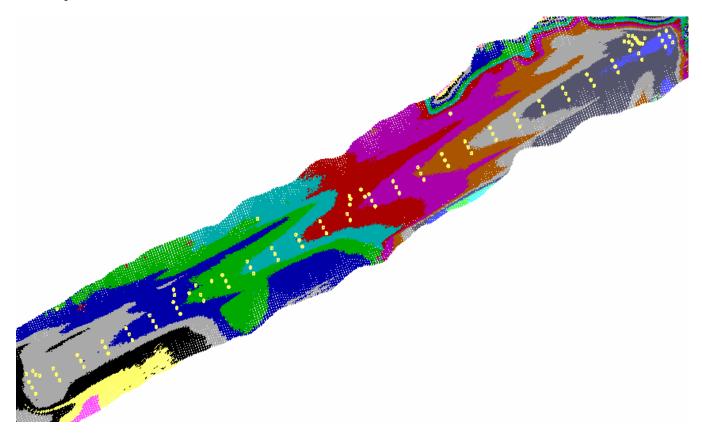


Figure 7-6: One flight line parallel to the runway ground control points. The flight line is color coded at one-meter elevation intervals. The LiDAR data was collected at about 500 meters AGL.

CALIBRATION RESULTS

Calibration Flight Summary

The following report summarizes the results of the calibration flights and error analysis.

Table 1 indicates the analysis of the LiDAR data when compared with ground truth data. The LiDAR specification stipulates that position accuracy should have a one-sigma (σ) value of 1/2000 times altitude (68% of all the values considered must be equal to or less than the σ -value). The elevation accuracy should have a one-sigma (σ) value of 15 cm.

Table 1. LiDAR Performance Accuracy

Flight	Base Station Used	Calibration Attribute	Standard Deviation	Mean Difference from Target	RMS	# of Points Evaluated	Elevation Flown (m AGL)
Day 29105	COLB	Elevation	0.015 m	-0.002 m	0.015	990387	900

Note: For Z calculations, all points are compared against existing DTM.

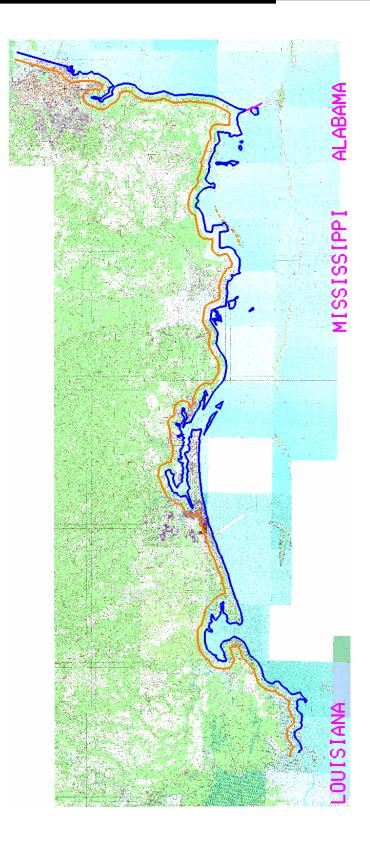
The error analysis between the ground truth elevation points and the LiDAR data can be seen in Table 1. The results of this analysis produced better elevation accuracy than one-sigma (σ) value of 15 cm. All comparisons fell within the required specifications.

Besides calibration over Woolpert calibration site, on-site calibration using data acquired for project was performed to calibrate pitch, roll, heading, and latency in a relative orientation way. This kind of calibration is employed to ensure relative accuracy.

Intensity based range correction was performed over a site with various surface types and known elevations. An intensity based range correction table was calculated based on statistics of measurements. This table was used for point cloud reduction.

Final Calibration Parameters

The following numbers were derived by Leica through lab calibration, and from data acquired on Woolpert's LiDAR calibration site as well as from data for the project.


Parameter	Value	Format
Lab fixed parameters		
Range 1 Correction	2.400 m	0.000
Range 2 Correction	2.400 m	0.000
Encoder Latency	0.00 mcr sec	0.00
Ticks Per Revolution	8401818 ticks	0000000
Attitude		
*Roll (radian)	0.041013671	0.0000
*Pitch (radian)	-0.002854899	0.0000
*Heading (radian)	0.001416112	0.0000
*Scan angle correct	-12613 ticks	00000
Mechanic		
*Torsion (no unit)	-85000 units	0000

* Value calibrated on site from calibration data

Based on the analysis of the LiDAR data the accuracy of the system meets the required specifications.

Approved By:	_		
Title	Name	Signature	Date
LiDAR Specialist	Qian Xiao	0.	November 4, 2005

Figure A

Figure A – Project Boundary/LiDAR Coverage

Figure B

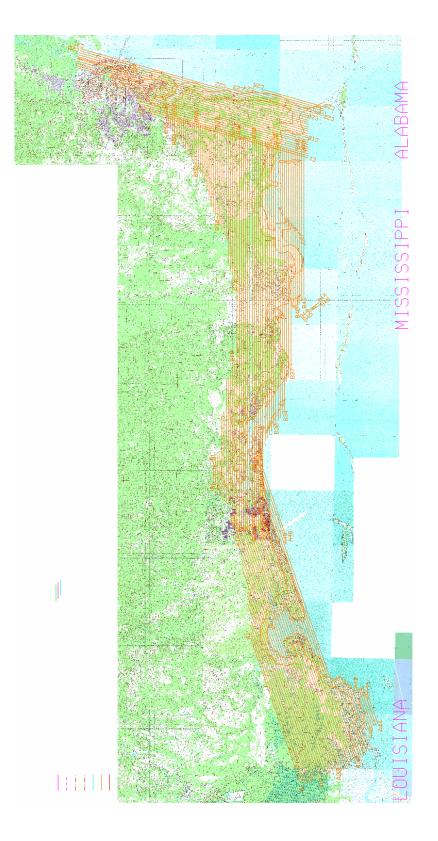


Figure B-LiDAR Coverage

Figure C

	AR Data Aqui use with Lieca		Date: <u>/9</u>		Julian D		Client/Mission Name/Project Number:			
perato				MM YY	40		, r		PS began logg	.,,
	/ Oneill / Smith	/ Kibler	Airc N4040P /		Survey T		- the			pm (central
Pilot:	~		Passenge	r:	Wires	Ā	Missi	on St	art Time (Whee	ls Up):
	Sebhart / Rade	r			Calibrat	ion			8140,	
•	ature (C):	30	Dew Point	~	Pressure:	5	Missi	ion Er	nd Time (Wheel	
	tal Visibility:		Wind Dire		Wind Spee		Fron	n the	Airport 1	o 1403 _ Airpo
Cloud C	over:		Surface C Wet /Or	onditions: / Snow	Precipitati Y/4		Using	g Digi	tal Camera Ima	ges? Y / P
				LASER S	PECIFICAT	IONS -				10
Scan Angle (FOV):	Scan Frequency (Hz)	Puise Rate (kHz): 52.3	Ranges & Intensities 1+1 2+2 3+3	Attentuator Setting 0 (0.0)	Approx. Air (knots	s)	Ran	nge Gat	ed AGL: <u>3000</u> e: 1575 <u>362</u> ge Values Adjusted AGL:	MSL: <u>3050</u> (from pulse rate value
40	36	56.1	3+3	2 (1.0)	136	.				
Fit Line	Miss	ion ID#	Heading	HDOP	VDOP	SV's	Course Setting	Fige # Setono	Lin	e Notes
1851	050430	613217					9		ak	120 Acc
621	050920	014 733	5	0.996	1.394	8	1	11		- in ye
CZZ	11	020428	N	1.179	1.781	7	4	-41		
(23		_021534 _022427	5	1.171	1.808	7		4		
24	er	_ 023313	5	1.147	1,748	7		-1		
c 26	а	024036	N	1.037	1.518	8	А	1		
c Zo	~	_ 125132		0,994	1.471	8	4	4		
619 C18	H 12	_ 030 838 _ 032 539	5 N	0,936	1.617	8	- "			<u></u>
< 17	- A	034234	Ś	1.046	1.689	7	"	"		
C:16	4	_035927	N	0.918		8	74	£,		<u>.</u>
		-					<u> </u>			
						<u> </u>	-			
		-		<u> </u>	· · · ·					
								<u> </u>		
		-					<u> </u>			
							+			
		_								· · · ·
						<u> </u>				
7		a					+	-		
, <u>`</u>						<u> </u>				
		_								÷
		_	1	1	1	1	1			

Figure C.1 – LiDAR Flight Log

	AR Data Aqu		Date:20	19105	2463 <u>Survey Type:</u>		Client/Mission Name/Project Number:			
(r use with Lieca	ASL50 unit)	DD	MM YÝ						
Rahbel	or: k / Oneill / Smith	/ Kibler	N404CP	raft: / N4032C			Appl	anix (GPS began logging at: 9:00 fm Center	
Pilot:			Passenge	Passenger: Wires Mission Start Time (Wheels Up):		tart Time (Wheels Up):				
	Gebhart / Rade	r			Calibrat				9:12pm	
Tempurature (C):		28	Dew Point	t 9	Pressure: 300	6	Miss		nd Time (Wheels Down): Zi So Am	
Horizon	ntal Visibility:	10	Wind Dire	ction:	Wind Spe	ed:	Eror	nuho	BAirport ToKOBAirpo	
Cloud C	Cover:		Surface C Wet / Dr	enditions:	Precipitat Y //	ion:			ital Camera Images? Y / 🕥	
			·		PECIFICAT			<u></u>		
Scan Angle (FOV): 40	Scan Frequency (Hz) 36	Pulse Rate (kHz): 52,3	Ranges & Intensities 1+1 2+2 3+3	Attentuator Setting 0 (0.0) 2 (0.5) 2 (1.0)	Approx. Air (knots / 3	· Speed s)	Specified AGL: 3000 MSL: 305			
Fit Line	Miss	ion ID#	Heading	HDOP	VDOP	SV's	Course	Pine. Seting	Line Notes	
1851	050921	020549					9	16	our isaider	
AIO	1.	023253	w	1.047	1.529	8	*	~		
$\frac{A^{q}}{A^{8}}$		030714	E	0,986	1,457	8	4	47 14		
AA	**	_ 032253	ω Ε	0.928	1.628	8	4	4		
16	14	033731	w	1.044	1.686		и.	47		
45	1	035134	E		1.373	78	.11	4		
44 A3	"	_040515	W	1.054	1.778	7	~	~*		
	4 11	-041825	E	1.185	1.874	2	-	4		
AZ AI	-1	<u>_043<i>n4</i></u> _044359	E E	1,236	2.043	77	4	61	-	
41	+1	_ 050206	41	11212	1,873	7		n		
A 12	G	052042	E	0,931	1,305	8	"	4		
A13	67	053921	ω	0,902		8	60	4		
<u>A14</u>	n	_ 055849	6	0.911	1.663	8	4	47		
<u> 4/5</u>	4	_ 061753	W	1.055	2,240	8	~	~		
A 16 A 17	м	<u> </u>	Ē_	1.049		8	11	H 6		
A18	41	07/349	WE	0,963	2,177 1,771	9		£.		
				0,000	,,,,,	<u> </u>				
		_								
		-			-		<u> </u>			
		-								
		- 1								
)							-			
<u> </u>	:									
		_								
		_								
		_								

Figure C.2 – LiDAR Flight Log

LiD/	AR Data Aqu	isition Log	- 7/	19.05	Julian Day:		Client/Mission Name/Project Number:			
(for	use with Lieca	ASL50 unit)		109105 MM YY	264		K	ATR	ÌNA	64557
operato	~		Airc	raft:		/			DC horan la	naina at
	/ Oneill / Smith	/ Kibler		N4032C	Survey 1				8:46	pm centra
Pilot:			Passenge	r:	Wire:		Miss	ion S	tart Time (Wh	
0	Gebhart / Rade	r			Calibrat				9:02	pm
Tempur	ature (C):	z8	Dew Point	t: 7	Pressure: 299	4	Miss	ion E	nd Time (Whe	els Down):
Horizon	tal Visibility:		Wind Dire	ction: 40	Wind Spe		Eror	n Acc	& Airport	- To Airp
Cloud C	over:		Surface C	onditions:	Precipitat	ion:	FIO	<u></u>	Mirpon -	- TOAIP
			Wet / Dr	V Snow	Ύ́́́́́́́	Ð	Usin	g Dig	ital Camera In	nages? Y / 🕼
				LASER SI	PECIFICAT	IONS -				
Scan	Scan	Pulse Rate	Ranges & Intensities	Attentuator Setting		_				MSL: 3050
Angle (FOV):	Frequency (Hz)	(kHz):	1+1	0 (0.0)	Approx. Air (knots		Ma	x Ran	ge Values	
40	36	52.3	2#2 3+3	2 (1.0)	/3				Adjusted AGI	
	- •									
Fit Line			Heading	HDOP	VDOP	SV's	Course Setting	fine Setting	tion i	ine Notes
TEST	050922	-0/5332					9	16	61	120,1 AG
A19	1	021728	w	1.162	1.793	7	4			
Azo	4	_ 0Z3654	Ē	1,010	1,493	8	"	"		
<u>AZI</u> AZZ	17	_ 025605 _ 031434	_w E	0,933 0,923	1,578	8	^	*		
23	м	033353	е W	1.044	1.693	-8-	~	2		
AZY	64	035327	E	1.063	1.797	7	4	-		
Azs	67	04/245	Ŵ	1.171	1.860	7		~		
A26	4	044204	Ē	1,260	2,049	7	#			
127		050120	w	1,204	1.835	7	-	~		
A28	4	052051	E	0.931	1,321	8	1 11	41		
A45 A46		_ <u>054849</u> _054846	W E	0,902	1.592	5	4	4		
AZI	4	055645	w	0,911	1.684	8	67	21		
AUU	a	_ 061837	<i>w</i>	1.046	Z.39Z		4	67		
A 43	54	_ 062358	Ŵ	1,053	2,522	w	-	5		
442	~	063009	E	1,050	2.627	8	и	47		
441	4	-063616	w	1.050	2.641	8	л	-1		
<u>A40</u> A39	4	064229	6	1.032	2,276	3	и ·г	4		
A 38	N	-069820	<u></u>	<i>1.008</i> 0.998	2,183	9	12 m	n		
A 37	u	- 070015	w	0,984	1,996	9	11	44		
436	*	020757	Ē	0,965	4816	9	~	20		
A 35	42	- 071528	ω	0.961	4670	3	"	4		
A 34	ħ	_ 072320	E	1.032	1.701		6	~		
A 33	- n	073120	ω	6043		8	a	n		
A32	n 	074000	E	4056	1.469	8	4	4 7		
A 31 A30	~	<u>-074758</u> -075621	W E	1.071	1.400	-Ş	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ר אי		
		_ 0 17 041		7.080	1.201	-				
-										

Figure C.3 – LiDAR Flight Log

				;						
					Julian D	21/1	Clien	/Mice	sion Name/Project Number:	
	AR Data Aqu		Date: 03	10.105			- · · ·			
(for	use with Lieca	ASL50 unit)	DD MM YY		276		KATRINA			
perato				raft:	Survey T	Survey Type:		nix C	GPS began logging at:	
Rahbek	/ Oneill / Smith	/ Kibler	N#04CP	N4032C	Survey	ype:			9:12 pm CENTRAL	
Pilot:			Passenge	r:	Wires		Missi	on St	tart Time (Wheels Up):	
	Gebhart / Rade	r	, accongo		Calibrati				9:27 pm	
Fempur	ature (C):	7/	Dew Point	-	Pressure: 300	9	Missi	on El	nd Time (Wheels Down): 1:39 Am	
lorizon	tal Visibility:	26	Wind Dire		Wind Spee		-		1,2 (1)	
10112011	ital visibility.	70		50	8		Fron	m	Airport To Mos Airport	
Cloud C	Cover:		Surface C		Precipitati					
	i		Wet / Dr	y Snow	YI	D	Using	g Digi	ital Camera Images? Y / 🕸	
	1			LASER SI	PECIFICAT	IONS -			No.	
Scan	Scan	Pulse Rate	Ranges . & Intensities	Attentuator Setting					te: 1575 - 3622 (from pulse rate value)	
Angle (FOV):	Frequency (Hz)	(kHz):	1+1	0 (0.0)	Approx. Air (knots	-			ge Values ft	
40	36	52.3	3+3	2 (1.0)	/3	-			Adjusted AGL:	
10	101	, ,	N.							
sidune.	E Mirese	ion iD#t	-	CIENCOLE	VDOP	SVE	alle real Sectors	initian Istillion	Line Notes	
13-97	05 1064	_021651	NICTOR OF COLOR		and contesting the second	n de la companya de l Internación de la companya de la comp			GH 119.8 Abe	
468	<u>и</u>	023431	Ē	6.931	1.629	8	9	16		
470	11	023844	6	0.933	1,607	8	*	64 64		
48 B	4	024341	E	1.046	1.694	7	1	*	·	
4 <u>9 B</u>		_ 024756	W Ē	1.047	1.669	7	4	M		
51 B	~	025655	W	0.921	1.379	8	-1	~1		
52 B	-	030146	E	0.917	1.367	8	4	4		
53 B	4	_030716	W	0,916	1,348	8	4	4		
548	4	031201	E	0,918	1,347	8		61		
<u>55 B</u> 56 B	h	032/52	B	1.146	1,823	7	1.04	- 11		
578	и	032744	Ŵ	6172	1.925	7	~	62		
58 B	41	033301	G	1,196	1.996	7	-7	~		
59 B	11	_033857	<u> </u>	11216	2,062	7		1.		
60 B	и	_034430 _03510z	W I	1,233	2.092 2.086	777	a			
62 0	n	035726		1.229	2.035	7	R	4		
63B	n	_040431	W	1.213	1.955	7		n		
64 B	+	_041113	Ē	1.199	1.872	7	u a	~		
65 B	и ч	042514	W	0.833	1.228	9	14	5		
660 673	~	042514		0.842		9	"	*		
683	'n	_ 044144	E	0.983	1.516	7		٤.		
	u	045014	W	0,899		8	"	4		
690		ANCORC	E	0,902		1 E	<u> </u>	4	· · · · · · · · · · · · · · · · · · ·	
70 B	и	_ 045855	1 247		6684	₩.	1	5		
70 B 71 B	и	_ 050818	W		1757	IX				
70 B 71 B 72 B	и	050818	E	0,917	1.757	8	n	1		
70 B 71 B 72 B 73 B 74 B	и и ч	_ 050818	E		1.757	8888	ņ H	n		
70 B 71 B 72 B 73 B 74 B 15 B	и и и р	050818 051724 052638 053545 054602		0,917 1.066 1.073 1.076	1.757 2.280 2.560 2.62	8	л Н П	л И		
70 B 71 B 72 B 73 B 74 B 15 B 76 B	и и и и л	050818 051724 052638 053545 054602 055649	W JUJU	0,917 1.066 1.073 1.076 1.076	1.757 2.280 2.560 2.62 2.239	889	n H n	л И И		
70 B 71 B 72 B 73 B 74 B 15 B	и и п п л	050818 051724 052638 053545 054602	W JUJU	0,917 1.066 1.073 1.076	1.757 2.280 2.560 2.62 2.239 2.053	8899	л Н П	л И		

Figure C.4 – LiDAR Flight Log

1.

	D. D. J. 4	aition Log			Julian D	ay:	Client	/Miss	ion Name/Project Number:	
LIDA (for	R Data Aqui	ASL50 unit)	Date.04	0.05	277	;	KATRINA			
				YY MN	2.9		Appla	niv G	PS began logging at:	
perato Rahbek	r: / Oneill / Smith	/ Kibler	Aircr N404CP /		Survey Ty	/pe:	9:00 pm cert		9:00 pm central	
Pilot:	sebhart / Rade		Passenger	:	- Wires Ferrain Calibration		Missie	ion Start Time (Wheels Up): S: 16 pm		
	<u> </u>						Mingle	on En	d Time (Wheels Down):	
Tempur	ature (C):	26	Dew Point こ	S	Pressure: 300/		WISSI	onen		
lorizon	tal Visibility:	10	Wind Dire	ction:	Wind Spee		From	mo	B Airport To hors Airpo	
Cloud C	over:	CIR	Surface C Wet / Dr		Precipitation		Using) Digit	tal Camera Images? Y / 🕸	
					PECIFICATI	ONS				
Scan Angle (FOV):	Scan Frequency (Hz)	Pulse Rate (kHz):	Ranges & Intensities 1+1 2722.	Attentuator Setting 0 (0.0)	Approx. Air (knots	Speed)	Ran	ge Gat	ed AGL: 30/0 MSL: 3050 e: 1575 - 3627 (from pulse rate value) ge Values ft Adjusted AGL:	
40	36	52,3	3+3	2 (1.0)	137	0			·	
		X	Heerding	- annois	VDOP	SV's	Course Section	ister Galica	Citine Notes	
	05/005	020549	AND CONTRACTOR	UNION HOLDON	Contractor and the second	and the last			6-2	
IB	021005	_022623	W	0.929	1.643	8	9	16	119.9 46	
ZB	4	023128	Ē	0.932	1.618	8	~	47		
33	м	023651	w	0.935	1.592	8	~	n		
HB	47	024229	Ē	1,046	1.675	7	4	4	· · · · · · · · · · · · · · · · · · ·	
5B	7	025040	W	1.050	1,611	7	5	~		
60	1	025856		0,915	1.364	8	-1	61	/ Rull	
7B		0709/8		0,918		8	10	21	(1.182	
	n	03(946	Ē	1.163	1.0	7	61	e	1-110-	
8 <u>B</u>		033243	w	1,218	Z.041	7	le	11		
<u>98</u>		034331		1.247	2.088	7				
pB				1,230		1 +	4	-		
IB		035600		1,200		1 7	A	4		
123	4	041020		0,842		Ś	60	~	1 18,	
13B		04243				14	64	-	PARTIALS	
14B	64	043848		0.984		8	-	4	PARTI ACT	
15B	4	04530		0,902		8		61		
163	11	_ 050644		0.914		10	-	-1		
17B		052056		1.055		l é		4	- KEW	
18 B		053504	E_	1.057		9	11	9	IN BOTWEEW	
19B	n	_ 054919	W	1.047				er 14	HT STOPIUND	
20 B	u	060324		0.99	<u> z.037</u>	9		100	TAD WRONG	
LIB		061724	ΨW		1 1.767	9			in the or	
27-B	и	063131	OE	1.038				4	¥-7	
23B	и	064904	2 W	1.065	1.449	8	+	1		
24B	4	070232	Ē	1,235	1,315	<u> X</u>	11	+	1/	
				+			+	+	/	
<u> </u>										
								-		
·)										
ŕ									0,	
						-		+		
	1		1	1				_		
	+									

Figure C.5 – LiDAR Flight Log

Þ

ين المجمود الم	an the las									
LiD/	UR Dara Aqui use with Lieca	sition Log		10105	Julian D	-	Client/Mission Name/Project Number:			
1.33			DD MM YY		278				GPS began logging at:	
	ir: I Ondill I Sfjith	/ Kibler	Aircraft: N4040P / N4032C		Survey Type:		Appia	inix e	9:02 pm cantrel	
Pilot:	Sébhart / Rade	Passenger:			Wires Terrain Calibrati	B	Missi	on St	art Time (Wheels Up): 9717 Pm	
	seonart / page	ь.			Calibrati	011			,	
· ·	ature (C):	25	Dew Point	9	Pressure: Z99		Missi	on Er	nd Time (Wheels Down):	
	tal Visibility:	10	Wind Dire	040	Wind Spee		From	m	Airport To Mob Airport	
Cloud C	Cover		Surface C Wet / DP		Precipitati Y / A		Using) Digi	ital Camera Images? Y / 4⊅	
	: A is			LASER SI	PECIFICAT	IONS -				
Scan	Scan	Pulse Rate	Ranges	Attentuator			S	pecifi	ed AGL: <u>3000</u> MSL: <u>3050</u>	
Angle	Frequency	(kHz):	& Intensities 1+1	Setting 0 (0.0)	Approx. Air		Ran	ge Gal x Ran	te: 1575 — <u>3(,22</u> (from pulse rate value) ge Values ft	
(FOV):	(Hz)	~~~~	3+3	2 (1.0)	(knots /3	,			Adjusted AGL:	
40	,36	5Z.3	373	2 (1.0)	/3	_				
ERIO		ilaini (D#	Headline	R/HDIOP	VDOP	SVS	line se Relige		Line Notes	
CE5 1	051006	_ 020701							on	
12 B	11	- 022545	W	0,929		8	9	16	120 AGC	
130	17	024249	2	1.047	1.648	7	9	4	<u> </u>	
143	4	025839	<u>w</u>	1,153	1,811	5	h	~		
168	<i>c</i> ₁	033046	Ŵ	1.216	2.060	7	1.	a		
1 17B	· 6-	034624	6	1,240	Z.063		4	-1	PACTIALS	
18B	· 11	_ 0402.32	W	1.198	1.881	7	4	4	ACIT	
198	*	<u>041849</u> 043430		0.983	1,240	7	46 .	4		
20B ZIB		045017	Ē		1.576	8	61	11		
223	4	050517	w	0,912	1,736	8	47	•7		
23B	~	_ 052010		1.057		<u>k</u>	14	n	/	
240	- n	_ 053453		1.075		3	-7	1	ſ	
25B 26B	м	_ 055255 _ 061224	<u><u>u</u></u>	0,979	1.773	9	u	4		
273	и	063237	E	1.045		8	4	4		
283	17	_065ZZ8			1.392	8	с и	4		
290		071252		0,906	1.288	8	11	.4	= RAin?	
15c	п	_ 0 13 920		- 100						
				-			1-	-		
		_								
							+			
 		-							-	
		-				+	+	+		
L	· · · · · · · · · · · · · · · · · · ·									

Figure C.6 – LiDAR Flight Log

LIDAR Data Aquisition Log (for use with Lieca ASL50 unit) Date: <u>8 10 05</u> DD MM YY 281 KATRINA Derator: Rahbek / Oneill / Smith / Kibler Aircraft: N400CP / N4032C Survey Type: Wires Applanix GPS began logging at: 8 ! 53 Pm Cendral						Julian Da	ay:	Client	/Miss	ion Name/Project Number:	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-				
Survey Type: Sinvey Type: Wires Bilot: Gebhart / Kubler Passenger: Calibration Gebhart / Kubler Passenger: Calibration Calibration Mind Direction: Vind Direction: Secan Approx. Air Speed Regregate: Airstatter Airstrest colspaic <th cols<="" td=""><td></td><td>-</td><td></td><td colspan="2"></td><td colspan="2">-</td><td></td><td>-</td><td></td></th>	<td></td> <td>-</td> <td></td> <td colspan="2"></td> <td colspan="2">-</td> <td></td> <td>-</td> <td></td>		-				-			-	
Passenger: $rarrative (a)$ Passenger: $rarrative (a)$ Pressure: Mission Start I third (Wheels Op). fempurature (C): 2/ Dew Point: /> Z Pressure: Mission End Time (Wheels Op). torizontal Visibility: /o S S Z Pressure: Mission End Time (Wheels Op). torizontal Visibility: /o Surface Conditions: Precipitation: Y / d) Using Digital Camera Images? Y / A) condense Mark (b) Specified AGL: Scool MSSION AGL (CATONS) Specified AGL: Scool MSSION Precipitation: frequency (Hz): Start (b) Non All (b) Approx. Air Speed (nots) Specified AGL: Scool MSSION Precipitation: Mark (b) frequency (Hz): Start (b) Non All (b) Approx. Air Speed (nots) Specified AGL: Scool Mark (b) frequency (Hz): Start (b) Non All (cots) I (cots) Adjusted AGL: If (cots) frequency (Hz): Start (b) No. All (cots) I (cots) I (cots) Adjusted AGL: If (cots) file SG(10 - 0.5(8577) O.1(0.5(7) I (cots)			/ Kibler	N40 CP /	n4032C		/pe:	8:53 pm centr		8:53 pm central	
Tempurature (C): Dew Point: Pressure: ZP & Mission End Time (Wheels Down): Lorizontal Visibility: /> Wind Direction: Wind Speed: From $M & G$ Airport - To $M & O$ Airport Cloud Cover: Dew Point: Precipitation: Y / MD Using Digital Camera Images? Y / MD Scan Angle Frequency (Hz) Pulse Rate (Miz): Ranges internation (International Visibility) Seeing (International Visibility) Specified AGL: Scare (MSL: 30.50) Kon Angle Frequency (Hz) Pulse Rate (Miz): Ranges internation (International Visibility) Specified AGL: Scare (MSL: 30.50) Kon Angle (Hz) Pulse Rate (Miz): Ranges internation (International Visibility) Specified AGL: Scare (MSL: 30.50) Kon Angle (Hz) Pulse Rate (Miz): Ranges (Miz) Range Gate: 157 - 34.222 (International Visibility) Approx. Air Speed (International Visibility) Kon A (Stare Conditional Visibility) Y2 (MD) Max Range Values Internation (International Visibility) Adjusted AGL: (International Visibility) Kon A (Stare Conditional Visibility) Y2 (MD) Max Range Values Internation (International Visibility) Max Range Values Kon A (Stare Conditional Visibility) Y2 (MD) Max Range Values Internat	Pilot:	ebhart / Rade		Passenger	:	< Terrain		Missi	on St		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Tempura	ture (C):	21		5	Z980		Missi	on Er	nd Time (Wheels Down): 2:47 Am	
Noise 60.011 LA Wet $I_{DP}^{ep}/I \operatorname{Snow}$ Y / AD Using Digital Camera Images? Y / AD LASER SPECIFICATIONS LASER SPECIFICATIONS Scan Angle Numeration Setting Oppose Air Speed Range Gate: 1575 - 34222 (from puter rate value) MADE Stating Oppose Air Speed Range Gate: 1575 - 34222 (from puter rate value) MSL: 20.50 Max Range Gate: 1575 - 34222 (from puter rate value) Approx. Air Speed Range Gate: 1575 - 34222 (from puter rate value) Max Range Gate: 1575 - 34222 (from puter rate value) Adjusted AGL: Max Max Category Category Category MSL: 20.50 Max Category Category MSL: 20.50 MSL: 20.50 Max Category Category MSL: 20.50 MSL: 20.50 Max Category MSL: 20.50 MSL: 20.50 MSL: 20.50 Max Max Max Max Max MSL: 20.50 Max Max Max Max Max Max Max Max Max Max Max Max Max Max	Horizont	al Visibility:	10		350	5		From	Ma	Airport To MOB Airport	
Scan Angle (Froquency (FOV): Pulse Rate (kHz): Ranges (kHz): Attentustor (kHz): Attentustor (kHz): Attentustor (kHz): Specified AGL: 500 MSL: 305 $4'0$ $3'L$ $5'L$ $3'L$	Cloud C	over:	an	Surface C Wet / On	onditions: / Snow			Using) Digi	tal Camera Images? Y / 💫	
Scan Pulse Rate (kHz): Pulse Rate (kH					LASER SI	PECIFICATI	ONS			1101.00.5	
40 36 721 33 2(13) 730 11 11 11 110 111 110 111 110 111 110 111<	Angle	Frequency	(kHz):	& Intensities 1+1 (2+2)	Setting 0 (0.0)	(knots)	Ran	- ge Gat	te: 1575 3622 (from pulse rate value) ge Valuesft	
7267 051009 015857 0.934 1.632 8 9 16 119.7 1852 306 4 023125 W 1.048 1.639 7 n n 318 023125 W 1.048 1.639 7 n n 318 025016 E 1.068 1.813 7 n 326 0.30904 W 1.777 1.9547 7 n 326 0330904 W 1.777 1.9547 7 n 336 032739 E 1.245 2.09447 n n 346 032739 E 1.245 2.0947 n n 346 034531 W 1.272 9 n n 346 0492705 W 0.983 1.517 7 n 346 043719 E 0.902 1.567 K n 376 0455256 <td< td=""><td>40</td><td>36</td><td>1617</td><td>3+3</td><td>2 (1.0)</td><td>130</td><td>></td><td></td><td>_</td><td></td></td<>	40	36	1617	3+3	2 (1.0)	130	>		_		
7267 051009 015857 0.934 1.632 8 9 16 119.7 1852 306 4 023125 W 1.048 1.639 7 n n 318 023125 W 1.048 1.639 7 n n 318 025016 E 1.068 1.813 7 n 326 0.30904 W 1.777 1.9547 7 n 326 0330904 W 1.777 1.9547 7 n 336 032739 E 1.245 2.09447 n n 346 032739 E 1.245 2.0947 n n 346 034531 W 1.272 9 n n 346 0492705 W 0.983 1.517 7 n 346 043719 E 0.902 1.567 K n 376 0455256 <td< td=""><td></td><td>Miss</td><td>ion (D)</td><td></td><td>- SELDICIP</td><td>VIDOP</td><td>sv.s</td><td>destards Sectores</td><td>er er Friteri</td><td>Line Notes</td></td<>		Miss	ion (D)		- SELDICIP	VIDOP	sv.s	destards Sectores	er er Friteri	Line Notes	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Contraction of the Contraction of the									on.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				5	0.934	1.632	8	9	16	119.7 AGS	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4			1.048	1.639	7	*	4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		4			1.068	1.813	7	1	ł		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		P-		W	1.177		7	1	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32 1	61		E	1.245	2.094	7	1 4.	**		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		и		1			7	-	40		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							9	4	**		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21-0					the second se	~7	15	~		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								4	4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	200		045751				8	61	<i>د</i> .		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								"	"		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								61	41		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			051 102				8	2	-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							3	14			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							6	14			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25/2								-		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								_	24		
12 c " 065013 N 1.228 1.306 8 " " 11 c " 070919 \$ 4.925 2.349 7 " "							t Ś	"	-7		
12 c " 065013 N 1.228 1.306 8 " " 11 c " 070919 \$ 4.925 2.349 7 " "			001655		the state of the s		8	_			
110 " 070919 5 4925 2.349 7 " "							1×	_			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							-	_	-7		
					000	1,255					
Image: Sector of the sector	100	pe	_ 012341	<u>† ~ </u>	0.904	,					
Image: state in the state i				· .					1		
Image: Sector								+		·	
Image: Section of the section of th	├ ──┤										
Image: Section of the section of t										•	
Image: Sector)									· · · · · · · · · · · · · · · · · · ·	
Image: Second						-					
									-		
			-								

Figure C.7 – LiDAR Flight Log

\$

	R Data Aqui		Data D9	10.05			Client/Mission Name/Project Number:			
(for	use with Lieca	ASL50 unit)	Date: <u>09 160 1 05</u> DD MM YY		282		KATRINA			
erato			Aircraft:		Survey T		Appla		PS began logging at:	
Rahbek	/ Oneill / Smith	/ Kibler	N404CP /	N4032C	Survey I	ype.		- 8	3;44pm central	
Pilot:			Passenger	:	Wires Terrain		Missi		art Time (Wheels Up):	
G	Sebhart / Rade	r			Calibrati			8	5:59 pm	
Tempur	ature (C):		Dew Point	:	Pressure:		Missi		nd Time (Wheels Down):	
•			17		2985			//	1/4 pm	
Horizon	tal Visibility:	10	Wind Dire	ction: うろつ	Wind Spee		From	Mo	B Airport To Mos Airport	
Cloud C	over:		Surface C	onditions:	Precipitati				tal Camera Images? Y / 🖗	
			Wet / Or		Y /0		_	l Digi	tal Camera inages r 1 44	
			Ranges	Attentuator	PECIFICAT	ONS	s		ed AGL: 3000 MSL: 3050	
Scan Angle	Scan Frequency	Pulse Rate (kHz):	& Intensities 1+1	Setting 0 (0.0)	Approx. Air	Speed			te: 1575 <u>362.2.</u> (from pulse rate value) ge Values ft	
(FOV):	(Hz)	672	272	<1.0.5P	(knots 13-0		wa	k rtani	Adjusted AGL:	
40	36	52.3	3+3	2 (1.0)	130					
elt ise	Milete	on ID#	-	HIDOR	S VIDIOIP	SVs		e shae Richard	Line Notes	
	051010	- 015044							ac	
90	~	0202.59	5	0,932	1.643	80	9	16	/19.6A65	
8c 7c	4	021657	5	1.051	1.610.	7	4	-		
60	~	- 024419	N	4079	1.818	2	14	**		
50 40	4	025730	5 N	1,205	1,824 2.023	7	1.00	4		
30	· lı	_ 032350	. 5	1.229	2,101	Z	"	7		
20	6.	033658	1 %	1.1225	2.600	7	4	6		
-ic		_ 00-100		7.7 0 7	1.011					
					<u> </u>	<u> </u>	+-			
						<u> </u>				
						-		-		
	-	-								
<u> </u>										
								-		
		-			+		· · ·	+		
)							_			
		_						+		

Figure C.8 – LiDAR Flight Log